

SimHerd

Main topics

- Introduction to SimHerd
- How SimHerd is used in Denmark
- Setting the optimal breeding strategy

The SimHerd team

Søren Østergaard

CEO and Partner (20 %)
Professor at Aarhus university (80 %)

Jehan Ettema, Ph.D.

Partner and consultant

Ruth Davis, M.Sc.

Breeding specialist

Bodil Nielsen, DVM, Ph.D.

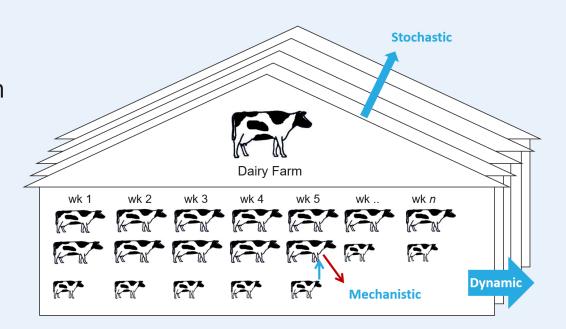
Veterinary specialist

Julie Brastrup Clasen, Ph.D.

Breeding specialist

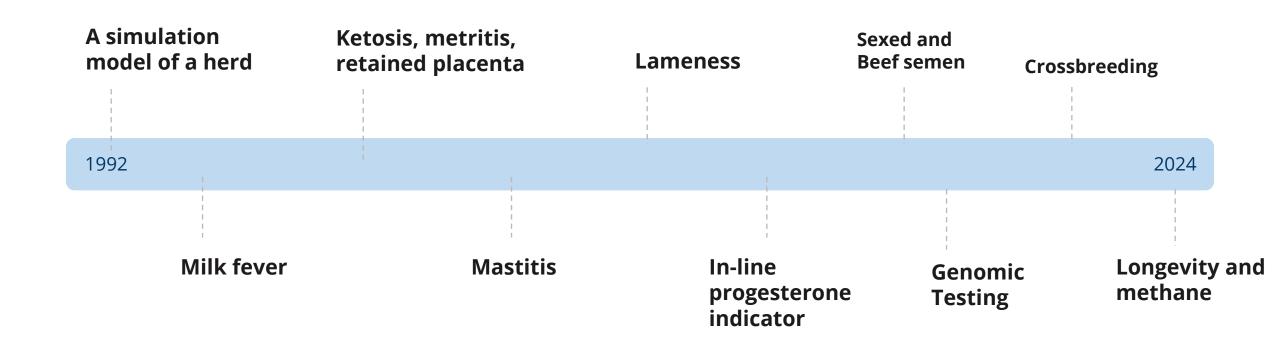
Nanna Bull

Breeding specialist Shared position with VikingDanmark


Owners

VikingDanmark (51%) Aarhus University (29%) Søren Østergaard (10%) Jehan Ettema (10%)

What is SimHerd?


- A dairy herd simulation model
- Can simulate all aspects from insemination to slaughter
- Developed at Aarhus University for more than 30 years
- Commercialized in 2010
- Predicts economic consequences and changed herd dynamics of given management changes

Our journey

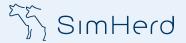
- Documented in over 30 articles

Scientific projects today

Feed efficiency and optimal culling

Disease surveillance, economics and climate

Crossbreeding on population level



Biosecure (Horizon, EU)

Who uses SimHerd?

And more!

What can be calculated?

- Identify economic potentials of:
 - Cow health
 - Reproduction
 - Dry-cows
 - Welfare
 - Breeding strategies
 - Herd expansion
 - SenseHub
 - Investments
 - Climate impact

Case example: switching to sand bedding

SimHerd simulation

ECM yield/cow +600 kg

Cell count -35,000

Cow mortality -0.5%

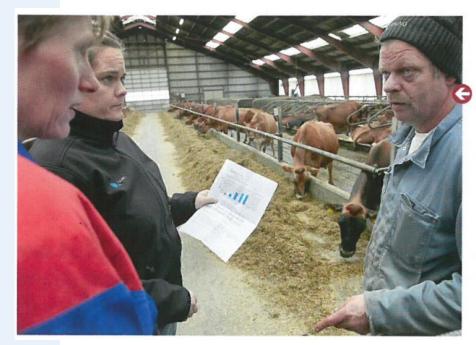
Replacement -6%

Beregning:

Kristina Brødvæk, VikingDanmark, var med til at lave den bagvedliggende beregning i SimHerd, som viste et indtjeningspotentiale på 300.000 kr. hos Dorte og Lars Hansen.

"Kristina Brødbæk from VikingDanmark was involved in creating the underlying calculation in SimHerd, which showed an **earning potential of 300,000 DKK** for Dorte and Lars Hansen."

Kvæg Magasinet, December 2016



Case example: switching to sand bedding

SimHard	simulation	Actual	hard	reculte*
SimHero	simulation	Actuai	nera	resuits.

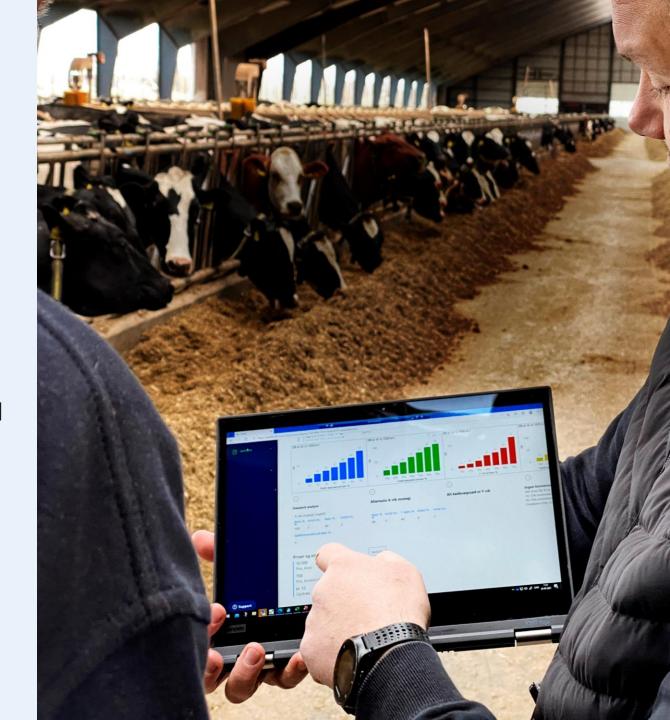
ECM yield/cow	+600 kg	+400 kg
Cell count	-35,000	-30,000
Cow mortality	-0.5%	-1.5%
Replacement	-6%	-6%

*17 months later

Beregning: Kristina Brødvæk,

Kristina Brødvæk, VikingDanmark, var med til at lave den bagvedliggende beregning i SimHerd, som viste et indtjeningspotentiale på 300.000 kr. hos Dorte og Lars Hansen.

"Kristina Brødbæk from VikingDanmark was involved in creating the underlying calculation in SimHerd, which showed an **earning potential of 300,000 DKK** for Dorte and Lars Hansen."

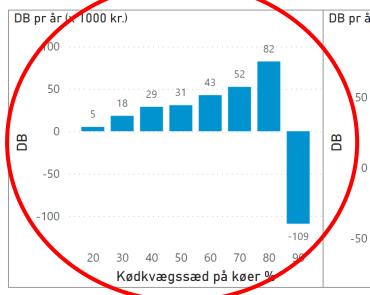

Kvæg Magasinet, December 2016

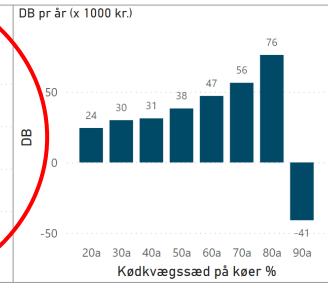
How is SimHerd used in Denmark?

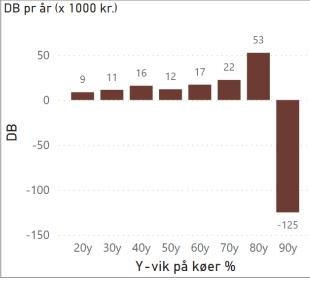
- Vets use SimHerd to identify economic potentials in health improvements
- Breeding advisors in Denmark, Sweden, Finland and Norway uses SimHerd to
 - Find the optimal level of beef semen and sexed semen
 - Show the value of genomic testing
 - .. In each individual herd!

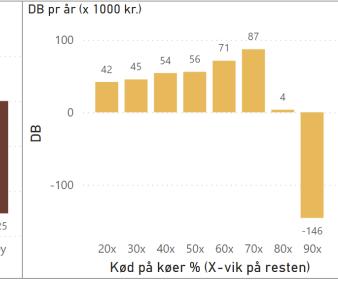
A case herd

- An average conventional Jersey herd
 - 250 cows
 - 10,100 kg ECM
 - 34 % replacement rate
 - 100 % sexed semen on heifers
 - 50 % sexed semen on cows
 - How much beef semen can they use?






SimHerd Improve four Decisions


CHRNummer

363636

Standard analysis

X-vik strategi i nudrift

(vier % Antal ins. Køer % Antal ins. 00 2 50 2

Kødkvægssæd på køer %

U

Alternative X-vik strategy

 Kvier %
 Antal ins.
 1. kalvs %
 Ældre %
 Antal ins.

 100
 3
 50
 50
 3

Male-sexed semen

X-vik strategi i nudrift

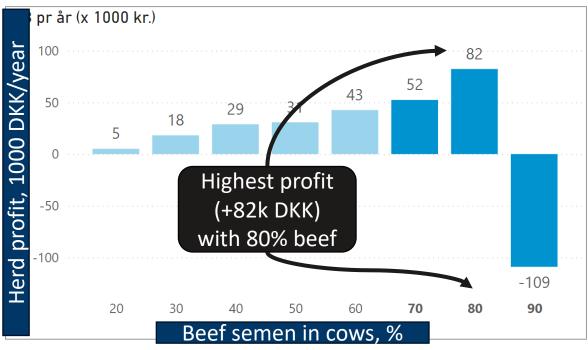
Kvier %Antal ins.Køer %Antal ins.1002502Kødkvægssæd på køer %

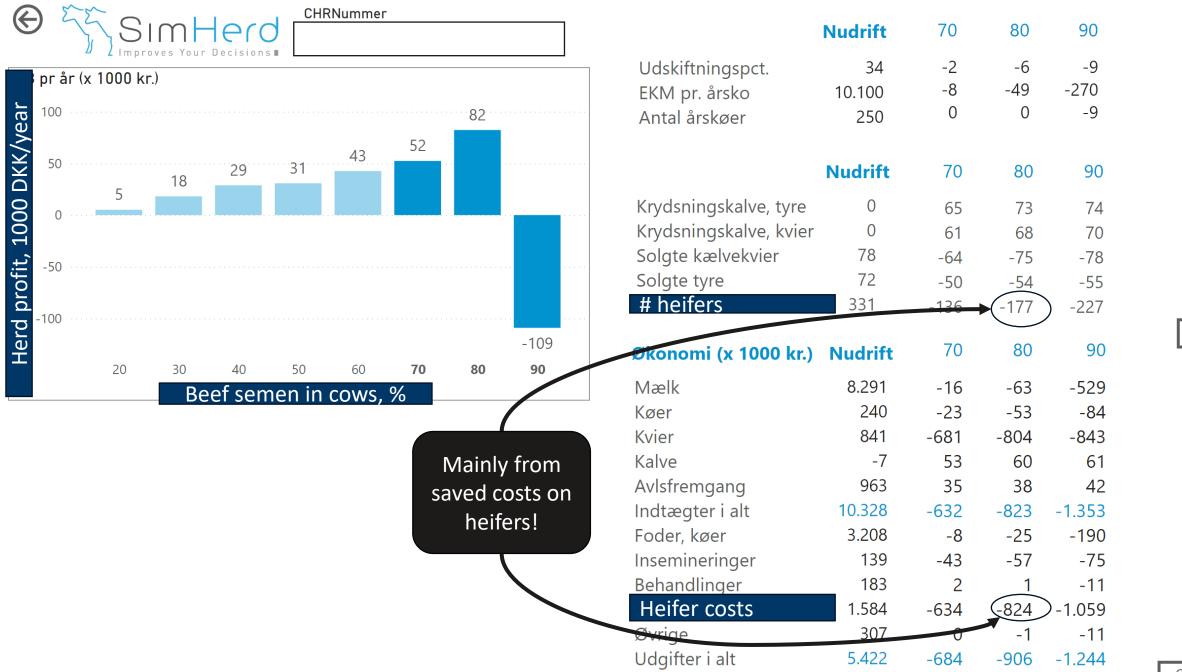
0

No conventional semen

20-90% af køerne insemineres med kød 80-10% af køerne insemineres med Xvik (2x).

Omløbere efter 2x Xvik insemineres med kød.


Alle kvier løbes med Xvik (2x) og omløbere insemineres med kød.



CHRNummer

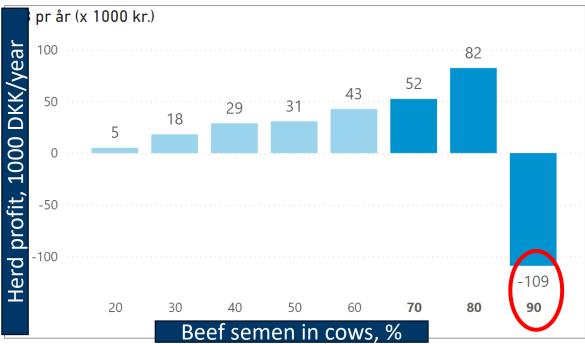
DB

4.906

52

82

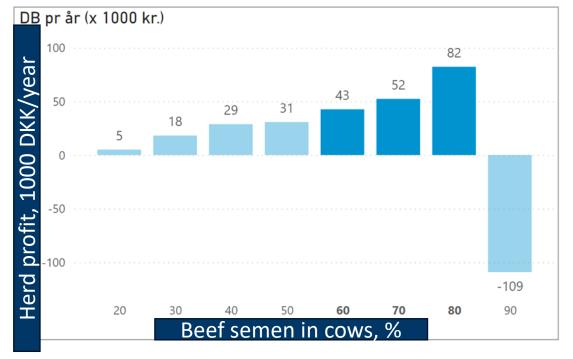
-109


V.

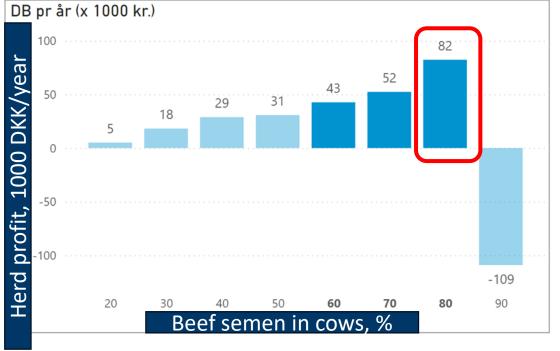
Vis økonomi

Skjul

Økonomien i genomisk test

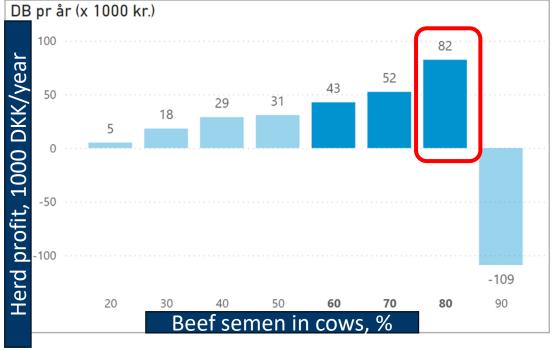


	Nudrift	70	80	90	V
Udskiftningspct.	34	-2	-6	-9	
EKM pr. årsko	10.100	-8	-49	-270	
# cows	250	0	0	-9	
					Loss of cows
	Nudrift	70	80	90	(not enough
Krydsningskalve, tyre	0	65	73	74	replacement heifers)
Krydsningskalve, kvier	0	61	68	70	Hericis)
Solgte kælvekvier	78	-64	-75	-78	
Solgte tyre	72	-50	-54	-55	
# heifers	331	-136	-177	-227	
Økonomi (x 1000 kr.)	Nudrift	70	80	90	Vis økonomi
Mælk	8.291	-16	-63	-529	Skju
Køer	240	-23	-53	-84	
Kvier	841	-681	-804	-843	
Kalve	-7	53	60	61	
Avlsfremgang	963	35	38	42	
Indtægter i alt	10.328	-632	-823	-1.353	
Foder, køer	3.208	-8	-25	-190	
Insemineringer	139	-43	-57	-75	
Behandlinger	183	2	1	-11	
Heifer costs	1.584	-634	-824	-1.059	
Øvrige	307	0	-1	-11	
Udgifter i alt	5.422	-684	-906	-1.244	Økonomien i
DB	4.906	52	82	-109	genomisk test


Skjul

	today	60	70	80	90
Tested heifers/yr	183	-62	-79	-101	-128
Testing costs/yr	23,8	-8,0	-10,2	-13,2	-16,6
Value of genetic gain/yr	20,1	3,9	2,3	-0,4	-6,5
Additional profit/yr	-3,7	11,9	12,6	12,7	10,2

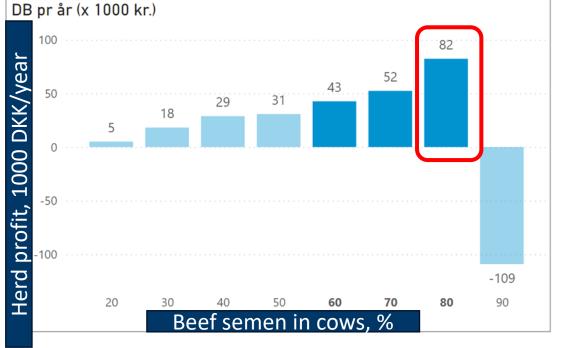
	today	00	70	80	
Tested heifers/yr	183	-62	-79	-101	-128
Testing costs/yr	23,8	-8,0	-10,2	-13,2	-16,6
Value of genetic gain/yr	20,1	3,9	2,3	-0,4	-6,5
Additional profit/yr	-3,7	11,9	12,6	12,7	10,2


 $\alpha \cap$

70

Fewer heifers to test

→ fewer testing costs



	today	60	70	80	90
Tested heifers/yr	183	-62	-79	-101	-128
Testing costs/yr	23,8	-8,0	-10,2	-13,2	-16,6
Value of genetic gain/yr	20,1	3,9	2,3	-0,4	-6,5
Additional profit/yr	-3,7	11,9	12,6	12,7	10,2

A small loss of genetic gain

	today	60	70	80	90
Tested heifers/yr	183	-62	-79	-101	-128
Testing costs/yr	23,8	-8,0	-10,2	-13,2	-16,6
Value of genetic gain/yr	20,1	3,9	2,3	-0,4	-6,5
Additional profit/yr	-3,7	11,9	12,6	12,7	10,2

.. But still a profit from genomic testing

Heifer price calculator

What should you get paid for your heifers?

Age at sale

Variable costs (feed, breeding, vet)

Labor costs

Fixed costs (housing, capital)

Calf mortality

Slaughtered heifers

Bonus for crossbred calves

Minimum sales price

1,214

€/heifer

Try it out!

https://simherd.com/en/heifer/

Your options for a SimHerd calculation

- Denmark contact VikingDanmark
- Sweden contact Växa Sverige
- Finland contact Faba
- Norway contact TINE
- Other countries contact us for more information!

Visit <u>simherd.com</u> to learn more